本帖最后由 可乐加盐 于 2021-12-25 13:37 编辑 % w! W$ h+ _1 l) h
( Y8 ~! C W$ Q% R6 B
Inventiones mathematicae
0 Y5 p3 E' }& m5 X) s- dRen, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-2
4 p r3 u* k6 u* ], t9 y复旦大学,上海数学中心
; \/ b/ T- E# y/ eDeng, Y., Nahmod, A.R. & Yue, H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01084-8
( w4 u4 N" z% d" w# e! q+ E# u7 f/ H上海科技大学(与国外机构合作)) F U) A5 N+ N, G% _2 b. o
Zhou, Y. Quasimap wall-crossing for GIT quotients. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01071-z- q# ]6 Q9 J0 W; k. E: h( T2 ?# P
上海数学中心
- q3 |' ^+ ] u" u5 aChen, Q., Janda, F. & Ruan, Y. The logarithmic gauged linear sigma model. Invent. math. 225, 1077–1154 (2021). https://doi.org/10.1007/s00222-021-01044-2: [% m, _. D4 ^% P" O1 D0 B, p
浙江大学(与国外机构合作)! \4 o- D3 M5 F
Chen, G. The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. 225, 529–602 (2021). https://doi.org/10.1007/s00222-021-01035-3 b7 C& x, K2 `9 d! t0 ?8 v
中国科学技术大学5 c! h; A$ l, c$ V+ h0 c2 x
Chan, K.Y. Homological branching law for <span class="MathJax" id="MathJax-Element-1711-Frame" tabindex="0" data-mathml="(GLn+1(F),GLn(F))" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">(GLn+1(F),GLn(F))(GLn+1(F),GLn(F)): projectivity and indecomposability. Invent. math. 225, 299–345 (2021). https://doi.org/10.1007/s00222-021-01033-5
3 b* y/ `2 i4 H上海数学中心
. A2 _8 L8 t$ Y0 R pGekhtman, I., Gerasimov, V., Potyagailo, L. et al. Martin boundary covers Floyd boundary. Invent. math. 223, 759–809 (2021). https://doi.org/10.1007/s00222-020-01015-z
* \5 } `: z9 I北京国际数学中心(与国外机构合作)% r$ w: [+ ?0 d3 G: b, k$ I
Kurinczuk, R., Skodlerack, D. & Stevens, S. Endo-parameters for p-adic classical groups. Invent. math. 223, 597–723 (2021). https://doi.org/10.1007/s00222-020-00997-0
3 j) }; K$ T1 M( y7 g% ^5 r上海科技大学(与国外机构合作)
% V( r0 o9 Z( [清华大学丘成桐数学中心
5 P7 _' y4 b6 j! t( XActa Mathematica The special fiber of the motivic deformation of the stable homotopy category is algebraic[size=13.3333px]Pages: 319 – 407 上海数学中心(与国外机构合作)
( W3 t* m2 k& ~' L/ @% c, D2 MJournal Of The American Mathematical Society
8 i& W7 `0 e1 j( U( GOn the constant scalar curvature Kähler metrics (I)—A priori estimates https://doi.org/10.1090/jams/967 中国科学技术大学(Supported by NSF)(与其他机构合作) On the constant scalar curvature Kähler metrics (II)—Existence results https://doi.org/10.1090/jams/966 中国科学技术大学(Supported by NSF)(与其他机构合作) Algebraicity of the metric tangent cones and equivariant K-stability https://doi.org/10.1090/jams/974 北京国际数学中心(第一单位)(与其他机构合作) 7 i7 I* X* H6 ^- N1 _9 u
7 U; T0 [9 H$ @ F# u
Annals of Mathematics Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below 浙江大学(与国外机构合作) Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture
/ g; K1 C; G) X) F5 }9 |4 TPolynomial structure of Gromov–Witten potential of quintic 33-folds
7 }! e9 a: N/ T, D# dhttps://doi.org/10.4007/annals.2021.194.3.1
& t9 j3 I3 s" K% G; L$ q A香港科技大学,北京国际数学中心,上海数学中心 & P; x$ E% t4 ]% O) ~
7 d, ~/ q* D; u. w
Global regularity for the Monge-Ampère equation with natural boundary condition
4 g+ A* K4 p/ t1 @' T. Phttps://doi.org/10.4007/annals.2021.194.3.47 ?7 L8 ^: I/ q% T" r
中国科学技术大学(与国外机构合作)
$ @" k, g/ {" J) n8 q% r/ v4 `; K& W, U* O2 i& a L
Chow groups and LL-derivatives of automorphic motives for unitary groups B- ?" N; R! c; D* a! }
https://doi.org/10.4007/annals.2021.194.3.6
) D, L$ @& E" Q- N$ z) v8 P浙江大学(与国外机构合作)
( z! @& w; ]0 t1 c; g' X% _; Y9 P5 `+ K2 F% J
" ^; n' r" Y$ {7 {+ q; F/ M
7 G1 `5 \; w* ~5 S |