|
发表于 2024-10-9 18:11:49
来自手机
|
显示全部楼层
人工智能掀起生物医学革命 AlphaFold 3 具备了药物设计的能力,可以预测药物中常用的分子(如配体和抗体),这些分子可与蛋白质结合,改变蛋白质在人类健康和疾病中的相互作用方式。在预测类似药物相互作用(包括蛋白质与配体的结合以及抗体与靶蛋白的结合)方面,AlphaFold 3 达到了前所未有的准确性。 为了利用 AlphaFold 3 在药物设计方面的潜力,Isomorphic Labs 已经与制药公司合作,将其应用于现实世界的挑战,并最终为一些对人类造成最具破坏性影响的疾病开发出新的疗法。 据了解,Isomorphic Labs 将 AlphaFold 3 与一套补充的内部人工智能模型结合,正在为内部项目以及制药合作伙伴进行药物设计。 值得关注的是,Demis Hassabis 同时领导着生物技术初创公司Isomorphic Labs。它成立于 2021 年,同样由Google的母公司 Alphabet 投资,旨在将 DeepMind 在生物学方面的人工智能研究进一步带入制药行业,希望在药物发现领域带来一场 AI 革命,使用人工智能来加速药物发现,并最终找到治疗人类一些最具破坏性的疾病的方法。 很长一段时间以来,Demis Hassabis 一直在想,一旦人工智能足够复杂、足够强大,他最先想做的,是帮助治疗疾病和理解生物学。 从人工智能优先的角度进行药物发现,在计算机中完成大部分研究,并将实验室留给验证,是其中一个重要内容。 与分子发生反应,搭建通路,最终形成一个虚拟细胞,是他的一个梦想。这样,就可以在虚拟细胞上进行大量实验,最后阶段再进入实验室来验证。就发现新药而言,目前从确定目标到拥有一个候选药物大约需要10年时间,如果能在虚拟细胞中完成大部分工作,或许可以将时间缩短一个数量级。 DeepMind正与更多实验室合作,通过构建虚拟细胞进行大量实验,以大大缩短医学及药物方面的研究时间。 DeepMind 已经发布了该系统的详细工作原理,并发布了源代码。AlphaFold 开源之后,影响力逐渐扩大。在该公司还与欧洲生物信息学研究所(European Bioinformatics Institute)建立了一个公共数据库,该数据库正在填充 AI 预测的新的蛋白质结构,条目几乎是科学已知的所有蛋白质。 Google DeepMind 也基于AlphaFold 3 推出了免费平台AlphaFold Server,供全世界的科学家利用它进行非商业性研究,预测蛋白质如何与细胞中的其他分子相互作用。 只需点击几下,生物学家就可以利用 AlphaFold 3 为由蛋白质、DNA、RNA 以及选择的配体、离子和化学修饰组成的结构进行建模。 对此,Francis Crick 研究所 Uhlmann 实验室的研究科学家 Céline Bouchoux 评价道: “AlphaFold 3 一经发布,有可能像 AlphaFold 一样具有开创性。有了 AlphaFold Server,其不再仅仅是预测结构,而是慷慨地提供访问权限:允许研究人员提出大胆的问题,并加速发现。” 这两年,AlphaFold成为了生物医药界的新贵,甚至获得了不少生物医药相关的科学大奖。世界各地的一些团队已经开始在抗生素耐药性、癌症和新冠病毒等研究中使用 AlphaFold。 另一个重大进展是,今年3月18日,David Baker在预印本BioRxiv上发文,首次使用生成式人工智能从头设计出了全新的抗体,这一重要发现未来有望让AI从头设计蛋白进入抗体药物市场。 鲜为人知的是,AlphaFold一直存在诸多竞争者,其中最为知名的莫过于华盛顿大学的David Baker团队。 Baker是预测和设计蛋白质三维结构方法的开创者,早在1998年由他主导设计的蛋白结构设计算法Rosetta就有了最初版本,远远早于AlphaFold。而这两年,Baker更是致力于超越AlphaFold,为此,Baker团队曾在Science杂志上连发3篇论文,介绍新算法ProteinMPNN。他认为,ProteinMPNN之于蛋白质设计,就像AlphaFold之于蛋白质结构预测一样。 “AI for Science”:AlphaFold可能是AI变革科学发现的开始 虽然通常被当作游戏和围棋界的明星事物想起,谈及2010 年创办DeepMind时,Hassabis认为其只有一个目标——创造解决世界上一切问题的通用人工智能(AGI),并将之形容为“21 世纪的阿波罗登月计划”。 在读博士期间,他梦想有一天创造出“人工智能科学家”,也就是说,创造一个比人类科学家还要聪明的“机器人科学家”。十多年来,DeepMind一直是推进人工智能技术前沿发展的先锋,通常是使用游戏作为开发通用目的学习系统的试验场。 Hassabis的想法是,通过AI,将科学加速到极致,并且认为自己已经发现了一种“让科学研究更有效率”的方法。在他眼中,人工智能系统正变得足够强大,可以应用于许多现实世界的问题,包括科学发现本身。他认为,有一天,人工智能系统可能会解决像广义相对论这样的问题。 “癌症、气候变迁、能源、基因组学、宏观经济学、金融系统、物理学等,太多我们想掌握的系统知识正变得极其复杂,如此巨大的信息量让最聪明的人穷其一生也无法完全掌握。如何才能从如此庞大的数据量中筛选出正确的见解呢?”他认为,未来超级智能机器将与人类专家合作解决一切问题,一种通用人工智能可以自动将非结构化信息转换为可使用知识,这是一种针对任何问题的元解决方法(meta-solution)。 虽然他的梦想听起来还有点遥远,在现实中,借助 AlphaFold,DeepMind 开启了新篇章。公司正投资一个名为“AI for Science”的团队,它已经发表了一系列出版物,涉及从天气预报到数学、量子化学和核聚变等领域。它们都没有 AlphaFold 的影响力,但雄心显而易见。 事实上,从根本上加快科学研究的步伐,尤其对医学、气候科学和绿色技术等领域的帮助,并非Hassabis或者DeepMind单个的梦想。 当前,在各个领域,应用人工智能方法分析数据、构建复杂生物现象的强大预测模型和生成模型,已然成为强大的科技创新潮流。例如,用AI识别新的抗生素、揭示希格斯玻色子,建模和分析星系形成,筛选粒子对撞机或机器人望远镜产生的大量数据、寻找其中的规律,识别具有电池或太阳能电池所需特性的材料,等等。 AI变革科学发现的历程,可能真的刚刚开始。 |
|