本帖最后由 可乐加盐 于 2021-12-25 13:37 编辑
) [& {6 h6 [3 m O; C
2 o& O9 D6 o. j }Inventiones mathematicae
4 A/ |7 q9 z" e! K, @Ren, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-2
6 R, z) j5 B6 a/ E' p" l0 F复旦大学,上海数学中心
+ t" ]; x6 M; C4 G( E( YDeng, Y., Nahmod, A.R. & Yue, H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01084-8
s! u- Z c! K f2 P上海科技大学(与国外机构合作)
0 X6 W) L- ?! SZhou, Y. Quasimap wall-crossing for GIT quotients. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01071-z
: ]- x; ]/ d, }4 O7 }& e/ {上海数学中心$ q. R( Y C( O
Chen, Q., Janda, F. & Ruan, Y. The logarithmic gauged linear sigma model. Invent. math. 225, 1077–1154 (2021). https://doi.org/10.1007/s00222-021-01044-2
, k I; K7 S* t5 @1 I, R浙江大学(与国外机构合作), r! o4 g* Q2 q$ ^! i2 v
Chen, G. The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. 225, 529–602 (2021). https://doi.org/10.1007/s00222-021-01035-3
) M' n+ h% L& A- |中国科学技术大学
- ?0 L2 N8 y1 d% J6 fChan, K.Y. Homological branching law for <span class="MathJax" id="MathJax-Element-1711-Frame" tabindex="0" data-mathml="(GLn+1(F),GLn(F))" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">(GLn+1(F),GLn(F))(GLn+1(F),GLn(F)): projectivity and indecomposability. Invent. math. 225, 299–345 (2021). https://doi.org/10.1007/s00222-021-01033-5; F. v$ e# \( S+ C6 l& g w" P; P
上海数学中心
5 o& R! b" R6 |Gekhtman, I., Gerasimov, V., Potyagailo, L. et al. Martin boundary covers Floyd boundary. Invent. math. 223, 759–809 (2021). https://doi.org/10.1007/s00222-020-01015-z2 H' h- Q' I- J8 i5 \
北京国际数学中心(与国外机构合作)
; F; a3 _* m' ^% m% W$ a' UKurinczuk, R., Skodlerack, D. & Stevens, S. Endo-parameters for p-adic classical groups. Invent. math. 223, 597–723 (2021). https://doi.org/10.1007/s00222-020-00997-0
' F0 s+ U1 \6 q' A. D$ w* ^$ z6 q上海科技大学(与国外机构合作)) ?4 {/ j& L p5 W! t2 ]" m
清华大学丘成桐数学中心 ) b' ~. w) a* t8 A) T1 S
Acta Mathematica The special fiber of the motivic deformation of the stable homotopy category is algebraic[size=13.3333px]Pages: 319 – 407 上海数学中心(与国外机构合作) : Q( t5 z3 V1 ^4 M2 V4 ^( k- T B
Journal Of The American Mathematical Society 2 _8 U! x' e- S4 M1 o" W2 M0 W
On the constant scalar curvature Kähler metrics (I)—A priori estimates https://doi.org/10.1090/jams/967 中国科学技术大学(Supported by NSF)(与其他机构合作) On the constant scalar curvature Kähler metrics (II)—Existence results https://doi.org/10.1090/jams/966 中国科学技术大学(Supported by NSF)(与其他机构合作) Algebraicity of the metric tangent cones and equivariant K-stability https://doi.org/10.1090/jams/974 北京国际数学中心(第一单位)(与其他机构合作) # C" F5 E5 `! g$ u0 u
* P- {- C/ [* R8 U
Annals of Mathematics Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below 浙江大学(与国外机构合作) Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture
! ~0 H6 [& Z e$ R6 YPolynomial structure of Gromov–Witten potential of quintic 33-folds
0 \0 x! z! o+ _https://doi.org/10.4007/annals.2021.194.3.1 k1 [0 d @0 W2 K- {' _
香港科技大学,北京国际数学中心,上海数学中心 + s i9 F7 R1 T! k
, H/ O2 L% x! c4 |6 _
Global regularity for the Monge-Ampère equation with natural boundary condition7 `1 Z+ C. c Z e- x: g
https://doi.org/10.4007/annals.2021.194.3.4$ Z7 s0 ^1 S9 P& r z
中国科学技术大学(与国外机构合作) # j! O: J% c% U- s% s7 g% x$ C
( K n9 X( s: `
Chow groups and LL-derivatives of automorphic motives for unitary groups
& g' h5 M# Z4 M! O5 [https://doi.org/10.4007/annals.2021.194.3.6
. y0 \$ n& [& n% Y/ }浙江大学(与国外机构合作) 0 R7 Q3 H3 j1 F: \ ?
0 x+ ~& @" z9 J
) J; R8 W$ A- U5 [7 G9 l7 T3 Z
. |' L. v9 U' C T |