本帖最后由 可乐加盐 于 2021-12-25 13:37 编辑
3 w* G6 R( B$ [0 N- d' @5 y6 ?6 I; s5 z8 _ ^. O' Q/ h- p
Inventiones mathematicae
, z* e$ E6 }8 t+ wRen, H., Shen, W. A Dichotomy for the Weierstrass-type functions. Invent. math. 226, 1057–1100 (2021). https://doi.org/10.1007/s00222-021-01060-2
' e5 @6 j2 V( b复旦大学,上海数学中心! x6 {5 g$ b3 h; ^( i) }* s$ H
Deng, Y., Nahmod, A.R. & Yue, H. Random tensors, propagation of randomness, and nonlinear dispersive equations. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01084-8
. ]/ A/ I: V7 v( u! v$ S+ Y上海科技大学(与国外机构合作), P* Q! a3 N+ Y- w! K
Zhou, Y. Quasimap wall-crossing for GIT quotients. Invent. math. (2021). https://doi.org/10.1007/s00222-021-01071-z: F4 S- D6 Z3 @" b
上海数学中心; K" E J X' @. Z$ q$ X' y N- k
Chen, Q., Janda, F. & Ruan, Y. The logarithmic gauged linear sigma model. Invent. math. 225, 1077–1154 (2021). https://doi.org/10.1007/s00222-021-01044-2* b+ G5 F$ I" \* Z
浙江大学(与国外机构合作)
+ W( K( E( r) j5 S m) tChen, G. The J-equation and the supercritical deformed Hermitian–Yang–Mills equation. Invent. math. 225, 529–602 (2021). https://doi.org/10.1007/s00222-021-01035-34 [6 L. e& y7 E$ n$ n0 r2 K
中国科学技术大学: m7 q9 K. l9 o2 t, V+ |# J
Chan, K.Y. Homological branching law for <span class="MathJax" id="MathJax-Element-1711-Frame" tabindex="0" data-mathml="(GLn+1(F),GLn(F))" role="presentation" style="box-sizing: inherit; display: inline; line-height: normal; word-spacing: normal; overflow-wrap: normal; white-space: nowrap; float: none; direction: ltr; max-width: none; max-height: none; min-width: 0px; min-height: 0px; border: 0px; position: relative;">(GLn+1(F),GLn(F))(GLn+1(F),GLn(F)): projectivity and indecomposability. Invent. math. 225, 299–345 (2021). https://doi.org/10.1007/s00222-021-01033-5
( R* R1 o' s9 y3 R6 c( a上海数学中心
$ |: L9 w- }5 XGekhtman, I., Gerasimov, V., Potyagailo, L. et al. Martin boundary covers Floyd boundary. Invent. math. 223, 759–809 (2021). https://doi.org/10.1007/s00222-020-01015-z
0 z8 b& W( r3 B1 P8 w* U6 ^北京国际数学中心(与国外机构合作)
6 @' J; Q5 J5 a( X( L9 gKurinczuk, R., Skodlerack, D. & Stevens, S. Endo-parameters for p-adic classical groups. Invent. math. 223, 597–723 (2021). https://doi.org/10.1007/s00222-020-00997-0) E5 O \3 \4 L9 R. G6 H
上海科技大学(与国外机构合作)' U) s, n( @4 e
清华大学丘成桐数学中心 9 r" p" H6 Y& _' z* r( G) R; e
Acta Mathematica The special fiber of the motivic deformation of the stable homotopy category is algebraic[size=13.3333px]Pages: 319 – 407 上海数学中心(与国外机构合作) . h# }: r" ~5 W: m
Journal Of The American Mathematical Society
& F% z# A4 P' J$ U, |2 P, |On the constant scalar curvature Kähler metrics (I)—A priori estimates https://doi.org/10.1090/jams/967 中国科学技术大学(Supported by NSF)(与其他机构合作) On the constant scalar curvature Kähler metrics (II)—Existence results https://doi.org/10.1090/jams/966 中国科学技术大学(Supported by NSF)(与其他机构合作) Algebraicity of the metric tangent cones and equivariant K-stability https://doi.org/10.1090/jams/974 北京国际数学中心(第一单位)(与其他机构合作) 3 Z* _+ @ u# _
4 M/ h1 f W& DAnnals of Mathematics Rectifiability of singular sets of noncollapsed limit spaces with Ricci curvature bounded below 浙江大学(与国外机构合作) Isolation of cuspidal spectrum, with application to the Gan–Gross–Prasad conjecture 8 L/ G( I: d0 I) J- |2 r
Polynomial structure of Gromov–Witten potential of quintic 33-folds
4 F4 A! ?8 K: b7 o3 A% [; l" Fhttps://doi.org/10.4007/annals.2021.194.3.1: o% Z0 h) e) j, W) ~8 y
香港科技大学,北京国际数学中心,上海数学中心
3 r$ U/ g2 d; ]5 W: W- u! _* `
1 E+ N- S2 |" s' f- mGlobal regularity for the Monge-Ampère equation with natural boundary condition
3 H, _/ Z# U1 H! F* hhttps://doi.org/10.4007/annals.2021.194.3.4
+ J* p& D, j. q; I5 i1 O+ g中国科学技术大学(与国外机构合作) 9 F: ~1 J& w2 `& C4 L1 R7 j
! {5 J9 Z" m- P8 C3 F
Chow groups and LL-derivatives of automorphic motives for unitary groups
# Z1 Z" X" e4 x% M" h9 a" }https://doi.org/10.4007/annals.2021.194.3.6
% w, f. }0 r* q* e浙江大学(与国外机构合作) 8 v; R) M8 C4 w* A! M2 `6 ?
. P% F% `* h3 h
7 g3 O( C: [7 ]" g1 y' e7 ^! U1 }
3 `' \5 G* p* E1 ?- \6 C" ? |